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I n  the steady flow of an incompressible, inviscid, conducting fluid past a 
magnetized sphere, the first-order effects of the magnetic field and the con- 
ductivity are studied. Paraboloidal wakes of vorticity and magnetic intensity are 
formed, the former being half the size of the latter. The vorticity, generated by 
the non-conservative electromagnetic force, is logarithmically infinite on the 
sphere. For the case of a dipole of moment M at the centre of a sphere of radius a, 

the drag coefficient is 144jP 

- 5P,u+,u 1 c -  I 2PRm 

where ,u and ,u' are the permeabilities of the fluid and sphere, respectively, ,8 is the 
ratio of the representative magnetic pressure ,uM2/2a6 to the free-stream dynamic 
pressure, and RM is the magnetic Reynolds number. 

1. Introduction 
So far in the study of the effects of a magnetic field on the flow of a conducting 

fluid past a finite body, attention has been focused on problems in which the 
magnetic field is applied externally. It is of some interest to consider a case in 
which the magnetic field originates in the body itself. In all such questions the 
generation of vorticity by the action of the non-conservative electromagnetic 
force is of special concern. 

Here we consider the steady flow of an incompressible, inviscid fluid past a 
sphere of arbitrary conductivity, in which there is an arbitrary, axially sym- 
metric, magnetic distribution. For such a configuration the current lines are 
circles. The results are described for a general distribution and are evaluated 
explicitly for a dipole situated a t  the centre. 

Our investigation is concerned with the first-order effects of the magnetic field 
and the conductivity of the fluid. This leads to a regular perturbation in P, the 
ratio of a representative magnetic pressure to the free-stream dynamic pressure. 
A similar perturbation in the magnetic Reynolds number RM is not uniformly 
valid; the perturbation being singular at  infinity. 

The situation is similar to that in Oseen's approximation to the viscous flow 
past a sphere: wakes (of magnetic intensity and vorticity) are formed whose 

* Now at University College London. 
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boundaries are paraboloids with linear dimensions proportional to l /RM.  The 
vorticity wake is half the size of the magnetic wake. 

The first term in the P-expansion for the magnetic field can be obtained as a 
regular perturbation in RM after an exponential factor (representing the non- 
uniformity at infinity) has been extracted. Once this is determined, the first term 
in the P-perturbation for the vorticity can be evaluated by integration along the 
streamlines of the potential flow past the sphere, using the fact that the vorticity 
vanishes at  infinity upstream. Now the time during which a fluid element is under 
the influence of the non-conservative force, in its passage through the neighbour- 
hood of the front stagnation point, tends to infinity logarithmically with its 
closest approach to that point. Consequently, the vorticity becomes logarithmi- 
cally infinite on the sphere. 

Drag on the sphere derives from two sources, the fluid pressure and the Maxwell 
stress. For the dipole case there is no contribution from the pressure, and the 
drag coefficient is [144pf2/5(2p +pf)2]/3RJI, where p and pf are the permeabilities 
of the fluid and sphere, respectively.* 

The flow is completely independent of the conductivity of the sphere, provided 
it is finite. On the other hand, if it  is assumed that the field was originally frozen 
into the sphere, the results are different. This case is discussed in the last section. 

2. Basic equations 

electrically conducting fluid of constant properties are : 
The equations governing the steady motion of an incompressible, inviscid, 

(a) div v = 0, 
( c )  curlH = a ( E + p v x H ) ,  } (1) 

(b) curl v x v = -grad [(p/po) + &v2] + (p/po) curl H x H, 
(d) curlE = 0, 

For an axially symmetric motion in which the velocity v and magnetic intensity 
H lie in the meridian plane and are independent of the azimuthal angle, the 
conduction equation (1  c )  shows that the electric field E is perpendicular to this 
plane and also independent of the azimuthal angle. It then follows from ( 1  d )  that 
E = 0, if it is to be finite at the axis. When v, r and H are now made dimensionless 
by referring them to the velocity a t  infinity U ,  the radius of the sphere a, and a 
representative magnetic intensity h, respectively, the equations reduce to 

( e )  divH = 0.  

( 2 )  
(a)  divv = 0, 

( c )  curlH = RMv x H, 
(b)curlvxv = -gradP+PcurlHxH, 

(d )  div H = 0, 

where P = p + 3v2, RM = Uap~r ,  

and p is now the pressure divided by po U2.  
When there is no magnetic field, p is zero and ( 2 b )  shows that P is constant 

along streamlines. Prom the assumed uniform conditions at  infinity it then 
follows that P is constant throughout and hence [using ( 2  b)  again] that curl v = 0. 
In conjunction with (2a)  this yields the potential solution 

v = vo = (( 1 -$) c o s ~ ,  - (1 +&) sine, 01,  (3) 

* The total drag is more easily obtained from the Joule dissipation (Chopra & Singer 1958). 
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satisfying the condition of zero normal velocity at the sphere r = 1 and tending 
to the given uniform stream (cos 8, -sin 8, 0) at infinity. Here we use spherical 
polar co-ordinates with 8 = 0 pointing downstream (see figure 1). The corre- 
sponding pressure field p = p ,  is then determined by the constancy of P. 

For weak magnetic fields (small h) we expand in powers of /3 

v=Vo+/?V1+ ..., p=po+&l+ ..., H=Ho+/3H1+..;. 

Note that H, is not zero. To obtain the magnetic field, H must be multiplied by 
h and it is the latter which tends to zero in the limit. According to ( 2 c )  and ( 2 4 ,  
H, must satisfy 

(4) curl H, = RJfvo x H,, div H, = 0, - 
U 

$o = const. 

\ I 
\ / 

FIGURE 1. Integration along the potential flow streamlines. 

where vo is given by (3). The remaining equations (2 a) and (2 b )  give 

curl v, x v, = - grad PI + curl H, x H,, div v, = 0, (5 )  

and these determine v, and p1 once H, is known; here 

PI= p'r+v,.v1 

and we have used the fact that curl v, = 0. 
We shall restrict the discussion to H,, v,, and pl. It is easily seen, however, 

that at each stage in the approximation the terms in v and p are determined 
before the term inH. 

3. Determination of H, 
The subscripts 0 on H, and 1 on v1 and p1 will now be dropped. In  axially 

symmetric flow the second of equations (4) allows us to write for H = (H,., He, 0 )  

where A is a function of r and 8 alone. On introducing this into the single non- 
zero component of the first equation, we find that A must satisfy 

=R, 1- -  [( V) 
-+-- P A  sin8 a ( ~- 1 aA) 
ar2 r2 28 sin8 28 
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For small values of R M  an appropriate solution of this equation may be found 
by a perturbation expansion. The perturbation is not regular at infinity, however, 
since the right-hand side of (7) vanishes more slowly than the left, as r --f 03, when 
A is algebraic. In  fact, if small terms in r on the right-hand side are neglected, the 
equation becomes* 

of which simple solutions, for arbitrary RM, are 

A = r$Kn+&($RMr) exp (+RAlfr cos 8)  sin2 8 Pk (cos 8). (8 )  

Here TZ is a positive integer, K is a Bessel function, and P the Legendre poly- 
nomial. Apart from the exponential, A is a product solution, chosen so as to be 
regular on the axis and finite at infinity. For large values of r, 

A N J ( r / R M )  exp [ - $ f i M r (  1 - cos e)]  sin2 0 P; (COS O ) ,  

which gives an exponential decrease for all 0 + 0. On the other hand, for r fixed, 
R&+&A tends to a multiple of sin2 8 PL(cos B)/rn as Rnf -+ 0;  that is, a solution of 
(7)  with RM = 0 (curl H = 0). 

Thus the magnetic field is swept into a wake behind the sphere, whose boundary 
is the paraboloid of revolution r( 1 - cos 8) = c/RJf (c a suitably chosen constant). 
As RM -+ 0 the wake broadens so as to fill the whole of space in the limit. 

It is now clear how the perturbation must be carried out. In  equation (7) we set 

A = exp [- +p(i - COB e)]a  ( p  = E M ? - ) ,  

and obtain for a the equation 

____ 
ap2 ap p2 ae 
8% aa sine a 

With RM = 0 this has the product solutions 

01 = p) e"2Kn+:(+p) sin2 eP;(cos e), (10) 

in accordance with (8). We now take a suitable combination of these solutions (so 
as to satisfy the boundary conditions at the sphere) and use it to generate the 
solution of (9) by successive approximation, ensuring at each stage that the 
boundary conditions are satisfied (to the appropriate order in RM) by adding a 
suitable combination of (10). 

The factor RL on the right-hand side of (9) does not imply that the perturbation 
is O(RL). On replacing p by RMr, it  becomes RM; and at  any finite r the approxi- 
mations proceed in powers of RM. However, there is an immediate exception due 

* In Oseen's approximation to the viscous flow past a sphere, this is the equation 
satisfied by the vorticity, which is hardly surprising since the same physical processes 
are involved and the same type of approximation has been made [vo replaced by the 
velocity at infinity in (a)]. 
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to the fact that the disturbance part of vo is a dipole field: the first two terms on the 
right in (9) cancel when the leading term in the first approximation is substituted. 

The correct combination of (10) to take when there is a dipole at the centre of 
the sphere is 

containing the solutions n. = 1 and n = 2." Here K and A are constants which must 
be determined in conjunction with the field inside the sphere. Since the first 
perturbation, found by substituting this expression into the right-hand side of (9) 
and integrating, provides corrections O(R$), we may neglect the uncorrected 
.terms at.this stage and set 

A = exp [ - +Ra2r( 1 - cos #)I ((.I.) sin2 0 + R,,[&c -t (A/r2) cos 01 sin2 6}. (1 1) 

FIGURE 2.  Distortion of the magnetic field of a dipole, for R, = 0.1 and y' = y. Broken 
lines show undisturbed field. Inside the sphere (T = 1) the fields are indistinguishable. 

Inside the sphere we again have E = 0, SO that curlH = a'E = 0, whatever 
the conductivity (r' of the sphere. Hence we take 

A = ( l / r )  sin2 8 + (kr2 + Ra2 Zr3 cos 6) sin2 6, (12) 

the first term being due to the dipole and the rest representing the (regular) 
irrotational disturbance field (k and I are constants to be determined). We can now 
identify F, as M/a3,  where M is the moment of the dipole. 

The validity of (1 1) and (12) now follows from the fact that K ,  A, k and Z can be 
chosen so that the boundary conditions on the sphere are satisfied to order R-$f. 
Thus the continuity of the tangential component of H requires 

1-2k = K ,  31 = -2A, 

and the continuity of the normal component of magnetic induction requires 

p'( 1 + k) = ,UK, p'l = ,u(+K + A), 

* K,+k(x) is a polynomial of degree n in 1/x multiplied by e-.]xi. 
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wherep’ is the permeability of the sphere. These are the only conditions; and they 
lead to the values 

We shall not take the approximation any further than ( 1  1 )  and (12 ) ,  though it 
may easily be done. From (6) we find for the field outside the sphere 

2K a, = exp[-- iR,r(l - 

Ho = exp [-+RIMr( 1 - 

to the same degree of approximation (see figure 2). 

4. Determination and behaviour of the vorticity 

has only one component, W .  According to (5 ) ,  it satisfies the equations 
The vorticity vector curl v is perpendicular to the meridian plane, and hence 

where P = (4, Fe, 0) = curlH x H = RM(vo x H) x H. From (3) and (13) we find 

< = exp [ - RMr( 1 - cos S)] { - ( 3 ~ ~ R , / r ~ )  ( 1  + R,r) sin2 6 cos 6 
+ (~~&/rlo)sinZB[($Kr5- 11Ar3-$~r2++A)cos2B+ (2r3+ 1 )  (4Kr2++h)]}, 

( 1 5 4  

+ (KR>/r*O) sin B cos B [ ( j ~ r ~  + 19hr3 + $KrZ - A )  cos2 B - (5r3 + 1) ( + K r 2  + A)]}, 
(15b) 

I$ = exp[-R,r(l - cos6 ) ]{ (6~~R~/P) ( l  +R,r)sin8cos26 

so that on eliminating P from equations (14), we obtain 

where 0 = w/(r  sin 6) and 

= exp[-R,r(l-cosB)] ( 1  +RMr) (7 cos26 + 1 )  

KR& 
rll 

+ __ cos 6[( - 3 ~ r ~  - 70hr3 - Y-K-..~ + 7h) cos2 6 + (9~15 + 6hr3 + &r2 + 9h)] 

Note that the argument of the exponential has been doubled, which means that 
the size of the vorticity wake is only half that of the magnetic field. 
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The left-hand side of (16) represents a differentiation along the streamlines of 
the potential flow (3). Hence it is convenient to introduce the potential function 
and stream function of this flow 

@o = (I+.$) case, 9o = r~{l-(l/r3)}sin0.* 

When these are taken as new independent variables in place of r a n d  8, the 
&equation becomes 

Thus we find that a t  any point P 

where the integrand is to be expressed in terms of q50 and r/.o, and the integration 
taken with @o fixed. The choice for the lower limit ensures that on each streamline 
w -+ 0 as r -+ co upstream. This is the only boundary condition needed to deter- 
mine the vorticity. 

Of special interest is the behaviour of w at the sphere. Note that the integrand 
of 0 becomes infinite at A (figure l), through which passes the dividing streamline 
connecting -co to any point on the sphere. Hence we consider the integration 
over a short segment Pl P2 of a neighbouring streamline ($o small), and let @Eo tend 
to zero (keeping the limits q50 = q51, q52 fixed). Now, for @o = const., 

dr 
r3(r3 - 1) cos 8 ' = [(r3 - 1)2 cos2 8 + (r3 + +)2 sin2 81 

so that the dominant part of the integral is 

the remainder tending to a finite limit as @o + 0. Since the integrals taken over 
the ranges ( - co, q51) and (q52, q5p)  also tend to finite limits, this is the leading part 
of the complete integral (17)t. Finally, we note that r2-  1 may be replaced by 
r p  - 1 in I, since P2 and P lie on the same streamline. It follows that, if terms which 
tend to h i t e  limits are omitted, 

w = -QsinOPf(l,n-; RAf)log(rp-l) 

= QRM[~2-~(~+2h)R~,+O(R&)]sin8plog(rp- l), (18) 

when P is close to the sphere. 
The vorticity is logarithmically infinite only on the sphere. For a point P close 

to the axis downstream, a term log (r2 - 1) still arises from integration near A (and 
a similar term from integration near the rear stagnation point B), but this time 
it is replaced by log (sin2 O P ) ,  a quantity which, when multiplied by sin B,, tends 
to zero with 8,. It is easily seen that w is also zero on the axis upstream. 

* This is the square root of what is usually taken to be the stream function. 
t For more details, see Appendix 1. 
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It is also of interest to see how the vorticity dies off at large distances. More 
precisely, we shall assume that 6, = RMrp( 1 - cos 8,) is large: in particular, this 
ensures that r is large at every upstream point on the streamline through P, so 
that the integrand in (17) may be replaced by 

~ K ~ R &  
r7 

-___ (cos38+ 7 C O S ~  8- 3 cos 8 + 1) exp [ - RJfr(l - cos B) ] ,  

while, effectively, q50 = rcos8, II., = rsin8. 

If now we change the integration variable to 

r( 1 - cos 8) 
rp( 1 - cos 8,) 1, = ______ - 

the integral may be written as 

where g is a rational function of u with 

g(o,coSe,) = - ~ ~ i - c o ~ e , ~ ~ ~ c ~ ~ ~ e p + 7 ~ 0 s ~ e p - 3 ~ ~ ~ e p + i ~  

and poles at u = - 1 5 i cot (QB,). It now follows from Watson’s lemma [see 
Copson 1935, p. 2181 on asymptotic expansions that, for each fixed O,, 

~ K ~ R L  
sin 8, ( C O S ~  0, + 7 C O S ~  e, - 3 cos e, + I )  @ -  -___ 

4 
x exp [ - RMrp(l - cos8,)l 

when tp  is large. 

5. Expansion of o 
The velocity field corresponding to w can be written down by using the known 

velocity field of a circular vortex in the presence of a fixed sphere (Yeh, Martinek 
& Ludford 1955). The resulting formula is too complicated for our purposes, and 
accordingly we resort to a series expansion for w, which, although it can in 
principle be derived from (17), will in fact be obtained directly from (16). It 
turns out that only certain (Fourier) components of the velocity field can be so 
determined, but fortunately the only component needed for the computation of 
the drag is one which can. 

The stream function 1+4 corresponding to w satisfies the equation 

and in terms of it the velocity components are 
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Since the product solutions of (19 )  for w = 0 which are regular on the axis have 
the form 

@ = (n,r%+l+- rn sin26Pk(cosBj (n a positive integer), "-1 (21)  

it  is clear that we should expand in the form 
00 

w = z wn(r)sin8Pk(cos8). 

Correspondingly the right-hand side of (16 )  is written 

n=l 

m 

n=l 
f (r7 8 ;  Bhf) = Z Qn(r)PL(cos8), (23 )  

where the an are determined by suitable expansions of E", and F, (see next section). 
When the series (22 )  is substituted into the left-hand side of (16)  and the result 

brought into the same form as the right-hand side (23) ,  we find the recurrence 
relation 

1 2 + 2 [ ( r - ; ) w ; + 1 + ( n + 2 + F  2 n + 3  + ") wn+1] 

+ n-l [ (r - f) w;-.- (n- 1 +- "-4) wn-.] = TQ,(?.), 
2n -  1 2r3 

on equating coefficients of P;(cos 8). Its integrated form is 

- n - 1 + s4) wnP1]) da. ( 
The lower limit of integration is determined by the requirement that w, should 
not become algebraically infinite on r = 1. 

For n. = 1 we obtain 

w2 = -___ 

and then w4, w6, wg, . . . follow successively. On the other hand, for n = 2 the 
relation involves both w1 and w3, and w1 must be chosen before w3, w5, wg, . . . can 
be determined. This must be done in such a way that the complete series (22)  
tends to zero at infinitely large distances upstream, and, presumably, w1 is fixed 
by this condition. In  any event, in order to obtain the drag on the sphere it is 
sufficient to know w2. 

The $n(r) in the expansion 
CD 

$ = @n(r)sin28P;(cos8) 

of the stream function is determined, according to (19 )  and (22) ,  by the equation 

n=l 
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The solutions which vanish on r = 1 are given by 

and we choose 

80 that $n will remain finite at infinity. 
Once the $n have been determined, the velocity field follows from (20 ) .  In  

particular, W 

vO = 2 vn(r) sin BPk(cos O), v,(r) = - $k(r)/r. 
n=l 

The only detailed piece of information we need concerning this series is the value 
of v2 on r = 1 (see $6). From ( 2 5 )  and ( 2 6 )  we find 

v,(l) = -fm(1) = - 5 4  

= - jlw R,(a) da. (27) 

6.  The drag 

pressure and the other to the Maxwell stress. We consider these in turn. 
The force exerted by the fluid on the sphere has two parts, one due to the fluid 

Assume that the FO appearing in equation (14b) has been expanded in the form 

03 

FO = C a,(r)sinBPk(cosO). 
n=l  

Then on the sphere we find by integration of (14b) that 

W 

P = p + v o . v  = - c a,(i)P,(cOse), 
n=O 

where a o ( l )  is an undetermined constant of integration. Hence the total drag 
force due to pressure is po U2azDp where 

D~ = -p  pcose.znsineae 

1 W W 

1: 
= 2npIoT[  -#sine x v, ( i ) s in~~k(cose)+  x a n ( 1 ) ~ , ( c o s ~ )  sine cosede 

n = l  n=O 

= 2np[ -pv2( 1) + fa1( l)]. 

That the remaining terms in the series integrate to zero follows from the ortho- 
gonality property of the Legendre polynomials. 

To complete the calculation we assume that Fr has been expanded in the form 
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Then the a, appearing in the expansion off, see (23 ) ,  may be written 
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and the integral (27) becomes 

So far the treatment has been quite general. For the present case of a dipole 

Dp = pO(R&). (31) 
field we find 

Details of the calculation can be found in Appendix 2. 

a surface element of the sphere has components 
There remains the drag due to the Maxwell stress, ,uHi Hj - &H2& which on 

P ~ ~ { ~ ( H : - G ) ,  Hr H,, O}.  

DM = 27rp [$(H2, -Hi)  cos 0 - Hr H, sin 01 sin 8 d0. 

The total contribution is a force po U2u2D,, where 

(32)  Ion 
In  the present case the square bracket is 

B K ~ (  4 cos2 8 - 5 sin2 0) cos 8 + KR,[( $c + A )  ( 3  cos2 8 - 1 ) 2  - 6h sin2 0 cos2 81 + O( RL) 

[see (13)], and, as we expect, the first term makes no total contribution to the drag. 
The remainder give 

(33)  D M  = ~[~TK'RM + O(R&)].  

Note that the formulas (30 )  and (32 )  enable one to calculate the drag directly 
from the magnetic field. Also note that ( 3 3 )  is correct to quadratic terms in p 
and RM since if either p or RM is zero there can be no drag. 

7. The perfectly conducting sphere 
The preceding analysis applies to a sphere of arbitrary conductivity, and hence 

to one of arbitrarily large conductivity. However, if the conductivity is inhite,  
so that the magnetic field has been frozen into the sphere, the results are different. 
We consider in detail the dipole case again. 

The field outside is again determined by the solutions n = 1 , 2  in (10); neglecting 
uncorrected terms as before, we find 

On the sphere A = (,u'/,u) sin2@, correct to O(RM), so that the normal component 
of magnetic induction [see (6 ) ]  has the same value as that for the dipole field 
frozen into the sphere. There is no requirement on the tangential component of 
the magnetic field; any discontinuity in it corresponds to surface currents on 
the sphere. 
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The results are now obtained without further calculation by noting that (34) 
can be derived from (1  1) by formally setting K = - 2h = p.'/,u. Thus, according to 
(18), the vorticity again becomes logarithmically infinite at the sphere: 

when P i s  close to the sphere. As before, there is no contribution to the drag from 
the pressure; the total drag (due to the Maxwell stress) is po Uga2DM, where [see 
equation (33)] 

877 p' 
DM = - (-) P%!I[1+ O(RM)I* 

5 P  

From this we see that when a sphere of high conductivity is considered to be 
perfectly conducting, the computed drag is in error by a factor 

For example, soft iron has ap' of the order of 3 0 0 ~  for weak fields, and the factor 
is about In  equation (12), k .I. - 1 and I = 0 for large p'/p, so that the lines 
of induction tend to become compressed into the sphere. On the other hand, the 
frozen-in field approximation would be appropriate for materials used in per- 
manent magnets; it would also hold for a uniformly magnetized sphere. 

We are indebted to S. Goldstein for suggesting this problem and for his interest 
at every stage. The research by one of the authors (G. S. S. L.) was supported in 
part by the United States Air Force under Contract no. AF 49(638)-154, moni- 
tored by the AF Office of Scientific Research of the Air Research and Develop- 
ment Command, and in part by the Office of Ordnance Research, U.S. Army, 
under Contract DA-36-034-ORD-1486; and that by the other (J. D. M.) by the 
United States Air Force under Contract AF 19(604)-4545 with the Geophysics 
Research Directorate of the Air Force Cambridge Research Center, Air Research 
and Development Command. 

Appendix 1 
In view of the surprising nature of this result, we feel a brief discussion of the 

analysis should be given here. 
For and q52 fixed, it is clear that the integral (17), taken over the partial 

ranges (-a, q51) and (&, q5D) ,  tends to finite limits as $o --f 0. Hence we must 

also tends to a finite limit. 

front stagnation point, we can find constants A and B such that 
Now, in a sufficiently small neighbourhood, 6 do 6 q52, 0 < $o < E ,  of the 
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Also, for $,, fixed, 
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r de - ___..__ 
dr r3 ' $ 0  - 

(r3 - 1)s c o s ~ 8  + (r3 + +), sin28 - (r3 - 1) cos 8 - (r3+ 4) sin 8' 

= A(r, - rl)  - B(sin 8, - sin el), 
which clearly tends to a finite limit as $o +- 0. 

Appendix 2 
From equations (28) and (29 )  we have 

3 =  
al(r) + bl(r) = I. Fe sin2 0 d8 + 4 /OFr sin 8 cos 8 d8 

= J: (Fo sin 8 + 2 8  cos 8 )  sin 8 de, 

where, according to equations (15), 

Fe sin 8 + 2Fr cos 8 
~ K R L  

r7 =- exp [ -EM?'( 1 - cos S ) ]  sin2 8 cos 8[($Kr2 - A )  cos2 8 - (&r2 +A)] .  (35) 

Note that the leading terms in Fe and Fr cancel, this being a peculiarity of the 
dipole field. 

Now, in evaluating D, from (30), we may set R M  = 0 in this last exponential, 
since this leads only to an error O(R&). But then (35) is antisymmetric about 
8 = in- and hence gives 

al (r )+bl (r )  = 0. 
From this follows (31). 
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